

Biological Screening Workshop

Blood

What Is Blood?

- Slightly alkaline fluid made up of water, cells, enzymes, proteins, glucose, hormones, organic and inorganic substances
- Circulates throughout body
 - Supplies nutrients and oxygen to body
 - Removes waste

Blood Cells

- Cells mature and differentiate into several classes of cells:
 - Red blood cells
 - White blood cells
 - Platelets

Red Blood Cells (Erythrocytes)

- Have no nucleus
 - Not useful for DNA analysis
- Six to eight μm in size
- About 45% total volume of blood
- Most abundant cell in the blood

Red Blood Cells

- Disk shaped cells which make up 99% of the cells in the blood
- Principal carriers of the red colored hemoglobin molecules
 - Hemoglobin is an iron-containing protein and binds about 97% of all oxygen in the body

Red Blood Cells

White Blood Cells (WBC) (Leukocytes)

- Produced in bone marrow
- WBCs have a nucleus
 - Useful for DNA analysis
- Vital source of defense against external organisms
- White blood cells also clean up dead cells and tissue debris that would otherwise accumulate and lead to problems

Red and White Blood Cells

Image courtesy of the U.S. National Institutes of Health

Platelets

- Irregularly-shaped, colorless bodies produced in the bone marrow
- Their sticky surface lets them, along with other substances, form clots to stop bleeding
- Only active when damage occurs to the circulatory system walls

Blood Volumes in the Body

- Four to six liters of blood in the body
 - About 58% Veins
 - About 13% Arteries
 - About 12% Pulmonary Vessels (Lungs)
 - About 9% Heart
 - About 8% Arterioles/Capillaries

Blood in the Body

- Understanding the breakdown may help explain the amount of blood at the crime scene
- ACTIVE FLOW the heart is still pumping
 - Injury to jugular arterial spurting
- PASSIVE FLOW no blood pressure
 - Blood flow following death
 - Gunshot to heart blood pool near body

Forensic Significance Of Blood

- Hemoglobin (RBC)
 - Peroxidase-like activity can cleave H₂O₂
- Blood Group Antigen (RBC)
 - Bound to RBC membrane (ABO groups)
- DNA (WBC)
 - Found in cells with nucleus
- Proteins (PLASMA)
 - Serum used in species testing

Forensic Testing

- Presumptive tests
 - Indicates a substance is present
 - Not specific
- Confirmatory tests
 - Confirm a substance is present
 - Specific

Presumptive Tests

- Kastle-Meyer (Phenolphthalein)
- Leucomalachite Green (LMG)
- Hemastix[®]
- Luminol
- Other tests:
 - Tetramethylbenzidine (TMB)
 - Benzidine
 - Ortho-tolidine
 - Ortho-toluidine

Presumptive Tests

- Catalytic Tests
 - Based on the fact that hemoglobin (and some of its derivatives) exhibit a peroxidase activity
 - Tests based on this property are generally named after the compound undergoing oxidation (benzidine, TMB, etc.) or the discoverer (Kastle-Meyer, etc.)
 - Oxidant (hydrogen peroxide) oxidizes a colorless reagent to a colored reagent
 - Heme catalyzes this oxidation by cleaving an oxygen from hydrogen peroxide (H₂O₂)

Kastle-Meyer Test – How to Make

- Phenolphthalein + Potassium Hydroxide + Zinc
 - Reflux boil / condense
 - Reduces phenolphthalein to phenolphthalin
 - Oxygen removed and combined with OH from potassium hydroxide – boils off as water
 - Becomes a colorless solution
- Working solution
 - Phenolphthalin + ethanol + zinc pellets

Kastle-Meyer Test – How to Store

- Amber bottle
 - Light affects stability
- Zinc pellets
 - Binds free oxygen, prevents oxidation
- Room temp (working solution)
- Refrigerate (stock solution)

Kastle-Meyer Test – How to Perform

 Place a small cutting, swabbing, or extract of the suspected bloodstain on filter paper

- OR -

Swab the stain using a slightly moistened swab

Kastle-Meyer Test – Three Step Test

1. Add two to three drops of ethanol to the stain or swabbing.

Note: This will increase sensitivity by cleaning the area around the hemoglobin, better exposing the heme.

Kastle-Meyer Test – Three Step Test

 Add two drops of reagent and wait for about five seconds.

Note: This step aids in ruling out false positives due to the presence of chemical oxidants such as rust.

Kastle-Meyer Test – Three Step Test

- 3. Add two to three drops of $3\% H_2O_2$.
 - If immediate color change to PINK the test is POSITIVE for the possible presence of blood
 - If no color change blood is not present or is in too limited quantity for the test to detect.

Note: The swab will eventually turn pink (even if negative) over time due to nature of oxidation reactions.

Kastle-Meyer Test – Limitations

- Sensitivity
 - 1 in 1000 on dried stains
- Specificity
 - Can weed out false positives between steps 2 and 3
 - Chemical oxidants, vegetable peroxidases
 - Will not detect differences in animal or human blood
- Stability
 - Relatively stable if the reagents are stored separately and refrigerated

Kastle-Meyer Test

Kastle-Meyer Video

Leucomalachite Green – How to Make

- Malachite green + acetic acid + water + Zinc
 - Reflux boil / condense
 - Becomes a colorless solution
- Working solution
 - LMG reagent + zinc pellets

Leucomalachite Green - How to Store

- Amber bottle
- Zinc pellets
- Relatively stable at room temp

Leucomalachite Green – How to Perform

 Place a small cutting, swabbing, or extract of the suspected bloodstain on filter paper

- OR -

Swab the stain using a slightly moistened swab

Leucomalachite Green – How to Perform

- 1. Add one to two drops of LMG reagent.
 - A. Note color change.
 - B. If there is a color change, the test is considered inconclusive.

Leucomalachite Green – How to Perform

- 2. Add one to two drops of H₂O₂.
 - A. Note the results.
 - B. If color change to deep green-blue, the test is positive for the possible presence of blood.
 - c. If no color change the test is negative.

Leucomalachite Green – Limitations

- Sensitivity
 - About 1:1000
- Specificity
 - Chemical oxidants, vegetable peroxidases
 - Will not detect differences in animal or human blood
- Stability
 - Similar to KM

Leucomalachite Green

Leucomalacite Green Video

Hemastix®

- Reagent strips
- Bottle of 50 reagent strips
 - Store at room temp
- Test is based on the peroxidase activity of hemoglobin

Hemastix®

- Reagent on Hemastix® is diisopropylbenzene dihydroperoxide and 3,3',5,5'-tetramethylbenzidine (TMB)
- Color change ranges from orange to green
 - Possibly blue with higher concentrations of blood

Hemastix® – How to Perform

- Slightly moisten the pad on the tip of the strip with water.
- 2. Rub the damp pad on the stain in question.
- Note any color change within 60 seconds and compare to the chart on the bottle.
 - More green indicates more hemoglobin

Hemastix® – Limitations

- Sensitivity = 0.015 0.062 mg/dL free hemoglobin
- Specificity
 - Chemical oxidants, vegetable peroxidases
 - Will not detect differences in animal or human blood
- Stability
 - Stable for about one year
 - Date stamped expiration date on bottle

Hemastix®

Hemastix® Video

Biological Screening Workshop

Luminol – How it Works

- The iron in hemoglobin acts as a catalyst to cause a reaction between the luminol and H₂O₂
- Luminol loses nitrogen and hydrogen and gains oxygen
- This results in 3-aminopthalate which is energized and emits light

Luminol – How to Make

- Reagents needed:
 - Luminol (3-aminophthalhydrazide)
 - Sodium Perborate
 - Distilled water
 - Sodium Carbonate

Luminol – How to Store

- Spray bottle works best for testing
- Make each time you use it (daily)

Luminol – How to Perform

- 1. Spray the luminol directly onto the stain in question.
 - If the stain emits a light then the test result is POSITIVE for the possible presence of blood
 - If there is no reaction the result is NEGATIVE

Note: This test needs to be done in the dark to see the luminescence reaction, which can last for approximately 15 seconds.

Luminol – Limitations

- Sensitivity
 - 10-6 to 10-8 most sensitive presumptive test
- Specificity
 - Many false positives bleach, metals, chemical oxidants, vegetable peroxidases
 - Will not detect differences in animal or human blood

Luminol – Limitations

- Stability
 - Very unstable
 - About eight hour limit
- Mostly used at crime scene
 - Can dilute out stain (possibly too much for DNA analysis)
 - Used more for blood spatter, crime scene reconstruction

Tetramethylbenzidine (TMB) – How to Make

- 3,3', 5,5 '-tetramethylbenzidine (TMB) + glacial acetic acid
 - Easy to make compared to KM and LMG reagents

Tetramethylbenzidine (TMB) – How to Store

- Amber bottle
 - Light affects stability
- Refrigerate between uses
 - Only good for about one week

Tetramethylbenzidine (TMB) – How to Perform

 Place a small cutting, swabbing, or extract of the suspected bloodstain on filter paper

- OR -

Swab the stain using a slightly moistened swab

Tetramethylbenzidine (TMB) – How to Perform

- Add one drop of TMB solution.
- 2. Add one drop of $3\% H_2O_2$.
- 3. Detect color change:
 - If the stain turns blue-ish green, the test result is POSITIVE for the possible presence of blood
 - NEGATIVE if no color change

Tetramethylbenzidine (TMB) – Limitations

- Sensitivity
 - 1:10,000 on dried stains
- Specificity
 - Not as specific as KM test
 - False positives to vegetable peroxidases, bleach, potassium permanganate
 - Will not detect differences in animal or human blood

Tetramethylbenzidine (TMB) – Limitations

- Stability
 - Very unstable one week maximum
 - Loses sensitivity by a factor of 10 after one day
- Safety
 - Mutagen

Other Tests

- Benzidine
- Ortho tolidine (o-tolidine) –
 3,3'-Dimethylbenzidine
 - Increased sensitivity, decreased specificity, and same stability when compared to Kastle-Meyer
 - Rarely used due to safety concerns carcinogenic

ABAcard® HemaTrace®

- Tests for human hemoglobin (Hb)
- If human Hb is present reacts with a mobile monoclonal anti-human HB antibody
- Forms a mobile Ag-Ab complex
- This migrates to the "T" zone

ABAcard® HemaTrace®

- In the "T" zone polyclonal antihuman HB antibodies
- Forms Ab-Ag-Ab complex
- Antibodies tagged with pink dye upon aggregation at "T" zone – pink line
- Control zone has immobile antiimmunoglobulin which binds excess antihuman HB antibodies – form a pink line

ABAcard® HemaTrace® – How to Perform

- Extract cutting from stain in about 300 µl buffer
- Leave one to five minutes
- Add 150 µl of sample to the "S" well of the test card
- Wait 10 minutes, then read results
- Pink line in "T" and "C" zones = POSITIVE
- Pink line in only "C" zone = NEGATIVE

ABAcard® HemaTrace® – Limitations

- High Dose Hook Effect can give a false negative
 - Occurs with excess hemoglobin, which binds to the stationary antihuman HB Antibody in the "T" area
 - This prevents the mobile Ab-Ag complex from binding
 - Results in no pink line = NEGATIVE
 - FALSE NEGATIVE
- Not a confirmatory test gives positive result with ferret blood

HemaTrace Video Biological Screening Workshop

Seratec® HemDirect Hemoglobin Assay

- Tests for human hemoglobin (Hb)
 - Similar to the ABAcard® HemaTrace® test

Controls

- Positive
- Negative
- Substrate

Positive Controls

- Used to determine if the tests are working properly
 - A quality control check
- This is documented in the case file
- Example: Known blood on cloth or a swab

Negative Controls

- Used to determine if the reagents are contaminant free and working properly
 - A quality control check
- This is documented in the case file
- Example: Unstained cloth or a swab

Substrate Controls

- Used to determine if the substrate is interfering with the test
 - Troubleshooting
- This is documented in the case file
- Example: Unstained area adjacent to the questioned stain being tested

Questions? Biological Screening Workshop